
Tools for Security Testing in Continuous Integration
Pipelines

Michael Wager
Faculty of Computer Science

University of Applied Sciences Augsburg
Augsburg, Germany

mail@mwager.de

Abstract—As the world becomes more and more connected and
lots of devices running software to support all areas of human
life, security increasingly gets more important than ever. Modern
software development life cycles already make use of intelligent
processes and tooling in order to release high quality products.
This work researches current modern security tools with the
goal of automation in order to help make software more secure
while integrating into existing processes. The tools presented are
structured into three categories of application security testing
(AST): static, dynamic and interactive. It can be concluded that
lots of tools and professional products exist in the market today
and can be used quite easily.

I. INTRODUCTION

Software development is still a very young craft. But we
are writing the year 2022 and the amount of devices con-
taining more and more complex software is growing rapidly.
Comprehensive quality assurance, especially in the field of
web application development, definitely could deserve a lot
more attention. Nevertheless, while a few years ago it was
quite common practice to edit files on a production server
directly via the file transfer protocol (FTP) in order to deploy
a fix or a change, today’s methods and processes assure a
certain level of quality and are used quite often. One of these
methods is called Continuous Integration (CI). The idea is to
provide immediate feedback to the developers directly after
the integration of changes to a codebase. On every push to
the repository, a so called CI server starts executing a pipeline
of predefined tasks to ensure high quality and to make sure the
changes do not break existing functionality. Common tasks are
static code analysis to ensure a clean coding style or to catch
simple development mistakes or unit testing to make sure the
codebase maintains a high quality standard.

As this is also still a very young process, sadly software
security does not play a big role inside these processes. As
the pandemic led to a way higher usage of software in order
to stay connected with friends, family and coworkers and also

recent attacks against critical infrastructure moving through
the media, cyber security gets a greater attention in recent
times.

In the context of the Security Development Lifecycle [1],
one idea to ensure a great level of application security is to
automate as much and as early as possible directly during
development using automation techniques inside CI pipelines.
This work provides an overview of categories of continuous
security testing together with a review of existing tools. The
paper is structured as follows: First an overview of related
work and some technical background is given before present-
ing a selected set of tools. After a discussion the paper will
end with a conclusion.

II. RELATED WORK

This chapter presents related work researched in the context
of this paper, analyzing their open questions or missing goals
in order to get an overview of existing work in this area.

Security testing in continuous integration processes [2] is a
Master’s Thesis by Juha Kuusela and reviews existing security
methods and tools in order to analyze their applicability into
CI pipelines. It concludes that, among others, dependency
verification makes great sense and can be automated pretty
easy. The paper only covers a section of available technologies
and therefore cannot conclude on a wide range of relevant
languages.

Evaluation of the applicability of security testing techniques
in continuous integration environments [3] is a Master’s
Thesis by Pontus Thulin. It explores how existing security
techniques work in a CI environment and what level of
security they can help assure. It focuses on agile methods
in the field of web application development and more on
techniques instead of tools. However, as it takes a more

theoretical approach, it is missing a comparison of tools in
order to better conclude about its practicability.

Automated Security Testing Utilizing Continuous Integration
and Continuous Delivery Technologies [4], a Bachelor’s
thesis by Pyry Koskela, presents an implementation of a
containerized vulnerability scanning construct tailored to a
specific client infrastructure. It presents an interesting final
implementation but lacks a comprehensive comparison of
more tools.

Web application security testing as part of continuous
integration in .NET projects [5] is a Master’s Thesis by Joona
Immonen from 2015. It focuses only on security controls
for continuous integration in the field of web application
development using .NET projects and the Jenkins continuous
integration environment platform. Due to focusing on only
one programming language it lacks a greater comparison of
tools for generic usage.

Adding security testing in DevOps software development with
continuous integration and continuous delivery practices [6]
is a Bachelor’s thesis by Ella Viitasuo from 2020. It focuses
on developing a CI/CD pipeline for modern software projects
including automated security testing as a first step to integrate
security into software projects. As it only focuses on the field
of web application development and OWASP Top 10 it is
obviously missing a more generic comparison.

Challenges and solutions when adopting DevSecOps: A
systematic review [7] by Roshan N. Rajapakse et. al. is a
study aiming on systemizing the knowledge about challenges
faced by practitioners when adopting ”DevSecOps” and
the proposed solutions reported in the literature conducting
a Systematic Literature Review (SLR). It provides a
comprehensive overview of existing literature, challenges
and solutions to problems in the field of automating security
assurance and also identifies areas that need further research
like how to automate traditionally manual security practices.

As the field of automating security assurance is pretty
young, all of the reviewed papers also are quite up to date
(oldest being from 2015). All of them follow a similar goal
but mostly tailored for specific use cases of specific set of
languages or technologies. The purpose of this work is to give
an even more up to date overview of tools and comparison for
a more generic approach in order to give teams a simple and
straightforward guide on tools to use, challenges to face and
finally suggestions which tools could be preferred.

III. BACKGROUND

This chapter provides a quick overview of basic concepts the
reader has to understand in order to further grasp the contents
of this paper. It will focus on the concept of continuous
integration which is an important part of the concept of
”DevOps” (Development and operations) as well as current

efforts to automate application security assurance in modern
software development products (”DevSecOps”).

A. DevOps & Continuous Integration

Back in the days of early software development it was
quite common to develop a product for months or even
years and finally start to integrate it - i.e. preparing the
release of the product. Stakeholders and developers had no
clue how long this could take and lots of problems where
introduced with this kind of process. To solve this problem,
the idea of integrating often was first introduced in the extreme
programming software development process [8]. The idea is
simple: after making any change to a software product, be it
a new feature of a bug fix, implementing and testing it locally
on a developer machine, it will be commited to the source
code control repository. Once a so called CI server recognizes
the changes, it starts building and testing it again but this time
it may also contain changes from other developers. The CI
server will execute a so called build, including a pipeline of
tasks to be executed in order to check if no issues are found.
If this build fails the developer making the change will get
notified immediately. And this is the whole point: integration
errors are detected immediately and can get fixed right away,
making the integration process much more transparent.

Some practices necessary to make this work are:
• Usage of a single source code repository
• Automation of the build using a CI server - every commit

should build the product on the integration server
• Adding tasks to the build pipeline like static code analysis

and unit tests which are executed after building
• Notifying all relevant parties of the project about failing

builds
Nowadays, CI is quite heavily used in modern development

projects and there are also ideas and efforts taken to automate
security assurance inside the build pipelines of a CI server.

B. DevSecOps

Traditionally, security assurance is a process done mostly at
the end of the software development life cycle. Security testing
methods like penetration testing will concentrate on finding
vulnerabilities in already (or soon to be) released products.
While this is good and needed, the concept of DevSecOps
suggest that security assurance may be automated as well as
things like unit testing inside the CI server build pipeline - all
while the development process is still ongoing. This work will
focus on presenting a selection of up to date tools to achieve
that.

IV. TOOLS

This chapter gives a overview of current tools for continuous
security testing. It is structured into three parts: static applica-
tion security testing, dynamic application security testing and
interactive application security testing.

A. Static application security testing (SAST)
SAST tools work by scanning the source code, byte code

or binary of an application without running it with the goal
of identifying vulnerabilities before deployment. They can
assure secure coding practices are followed and find potential
vulnerabilities in the source code. It follows the idea of
integrating security early into the software development life
cycle (i.e. shift-left security). The following criteria should
be taken into account when evaluating SAST tools:

• CI integration
It is important that the tool supports automated integration
into existing CI pipelines and provides support for gen-
erating reports in common formats like XML or JSON.

• Scan speed
A major goal of continuous integration builds is speed.
If a SAST tool takes very long this may kill productivity.

• False positives
A well known problem with SAST tools is the generation
of many false positives, i.e. detecting flaws which are no
flaws at all. Therefore a good SAST tool should have a
low false positive rate.

• Developer productivity
In order to make developers work with the tool it is
necessary to generate reports with good explanations
of the detected flaws. Developers often may not have
sufficient security knowledge and therefore hints on how
to fix the detected flaws are very much appreciated.

Additionally to these criteria it should be looked at
language support, the model of delivery and pricing.

1) SonarQube [9]: SonarQube SAST detects security is-
sues in source code, supports the usage of quality gates
and provides a quality history and other metrics. It can be
integrated with CI pipelines like Jenkins, Azure DevOps and
more and it is possible to extend its functionality further using
more than 60 community plugins. It can detect injection flaws
and may also be integrated directly into IDEs.

Language support: Supports 29 languages
Delivery model: On-premises
Pricing: Community: free. Developers: from $150

2) WhiteSource [10]: WhiteSource SAST can make over
70 Common Weakness Enumeration (CWE) types visible -
including OWASP Top 10 - in desktop, web and mobile
applications. They are claiming to be ten times faster than
other SAST tools and it integrates well with existing DevOps
environment and common CI tools.

Language support: Supports 27 languages
Delivery model: Cloud
Pricing: Annual subscription based on the number of
developers

3) Veracode [11]: Veracode analyzes source code and
provides automated security feedback and is easy to integrate
into all major CI tools and also IDEs. They claim to have
good speed, a false-positive rate of less than 1.1 percent and
provides tips for fixing vulnerabilities when they are found.

Language support: Supports 25 languages
Delivery model: Cloud
Pricing: Not publicly available

4) Codacy [12]: Codacy produces scan results about the
code that go beyond security, including code quality metrics
and general code health. It integrates well with existing CI
tools and claims to have a low false positive rate. It has support
for OWASP Top 10 and other standards and features commit
suggestions in pull requests.

Language support: Supports over 40 languages
Delivery model: On-premises and cloud
Pricing: Open-source: free. Pro: $15 per user/mo

5) AppScan [13]: AppScan serves vulnerability checks and
generates reports including remediation suggestions. It sup-
ports automation via API and good integration into common
CI tools.

Language support: Supports 35 languages and frameworks
Delivery model: On-premises and cloud
Pricing: Not publicly available

6) Kiuwan Code Security [14]: Kiuwan automatically
scans source code to find vulnerabilities. It is compliant with
relevant standards like OWASP and CVE, covers a large
range of programming languages and integrates well into CI
pipelines.

Language support: Supports more than 30 languages
Delivery model: On-premises, cloud, hybrid
Pricing: Not publicly available

All tools presented in this section have very good language
support and integrate well with existing CI tools. It seems that
they are very modern and fulfill the requirements for static
automated security testing in a very good manner. Table I
compares the missing criteria defined in the beginning of this
section.

Table I
COMPARISON OF SAST TOOLS

SonarQube WhiteSource VeraCode Codacy AppScan Kiuwan
CI integration very good very good very good very good very good very good
Scan speed fast very fast fast fast fast very fast
False positive rate low low very low low low low
Developer productivity developer training included easy to use provides tips for developers good developer feedback developer friendly good reports

B. Dynamic application security testing (DAST)

DAST tools finds security problems in applications by
seeing how the application responds to specially crafted
requests that mimic attacks. They are also known as web
scanners and the OWASP foundation refers to them as web
application vulnerability scanners. This means, other than
SAST, they need a deployed and running application or API
to work. The following criteria should be taken into account
when evaluating DAST tools:

• CI integration
It is important that the tool supports automated integration
into existing CI pipelines and provides support for gen-
erating reports in common formats like XML or JSON.

• Vulnerability detection rate
This means how many relevant vulnerabilities (e.g. path
traversal, SQL injection, XSS) are detected by the tool.

• False positive rate
Same as with SAST, the generation of many false posi-
tives, i.e. detecting flaws which are no flaws at all is also
a problem with DAST tools.

• Security expertise (Developer productivity)
Results should be readable by people with less security
knowledge (i.e. regular developers)

• Customization support
DAST tools usually only catch simple vulnerabilities
because they do not have any context or clue of the
business rules of the application (black box testing).
Therefore the possibility for customizing test cases to
detect more complex vulnerabilities is a bonus.

1) NetSparker/Invicti [15]: Netsparker is a comprehensive
automated web vulnerability scanning tool. Its claims to be
the industry leader in the area of DAST and provides high
detection rates and good integration into CI solutions. It
provides good automation support, clear reports, has a high
vulnerability detection rate and a very low false positive rate.

Delivery model: On-premises and cloud
Pricing: Not publicly available

2) Acunetix [16]: Acunetix is a tool for automation of
vulnerability detection for websites, web applications, and
APIs. It claims to be an intuitive and easy-to-use platform.
High focus is placed on Single-Page Applications (SPAs), it
provides integration into bug/issue tracking systems and has
good CI integration support.

Delivery model: On-premises and cloud
Pricing: Not publicly available

3) AstraPentest [17]: AstraPentest is a combination of au-
tomated vulnerability scanning and manual penetration testing
and has good detection rate of common vulnerabilities like
SQL injection or cross site scripting. Integration of the scanner
with CI should be pretty easy, false positive rate is at zero and
customization is possible.

Delivery model: Cloud
Pricing: $99-$399 per month

4) PortSwigger BurpSuite [18]: BurpSuite is one of the
most well known penetration testing tools and regularly used
as a desktop application for manual testing. Nevertheless they
are providing native plugins for Jenkins and TeamCity, as well
as a generic driver for any other CI platform one wants to use.
This way it is possible to add automated vulnerability scans
into existing pipelines and configure rules for failing the build
based on the scan results.

Delivery model: Cloud
Pricing: Community: Free, Professional: $399/user/month,
Enterprise: $3999/year.

5) Detectify [19]: Detectify is a vulnerability scanner to
scan web applications or databases. It uses real payloads
simulating an attacker to detect common vulnerabilities like
OWASP Top 10 and can be easily integrated into CI tools.

Delivery model: Cloud
Pricing: Starting at $50/month

6) OWASP ZAP [20]: OWASP ZAP is a well known
open source security tool and like BurpSuite normally used
as a desktop application for manual penetration testing of
web applications. But in spite of that it supports automated
integration through its API including basic or advanced scans
and test results. Integration seems to be a little bit harder
compared to other tools but it is open source and free.

Delivery model: On-premise
Pricing: Open-source and free of charge

7) Veracode [21]: Veracode also provides a DAST tool on
order to automatically scan web apps or APIs from a single

interface. It claims to be very fast through parallel execution
of target scanning. It claims to have good low false positive
rate and good documentation of found vulnerabilities.

Delivery model: Cloud
Pricing: Not publicly available

Table II provides a comparison of the criteria defined in the
beginning of this section.

C. Interactive application security testing (IAST)

Contrary to SAST and DAST tools, there is a new type of
testing method called interactive application security testing,
or runtime security testing, short IAST [22, p. 140]. IAST tries
to combine the advantages of the other two methods while
leaving out the disadvantages they bring like false positive
rates or scan speed. IAST does not need a running application,
it depends on automated functional test cases or manual testing
to drive the application and an agent runs in the background
trying to identify vulnerabilities in the execution path of the
tests already run or while they are running. This means IAST is
only applicable if there already exists a very high test coverage
of an application. But this also means that every test run will
be automatically converted to a security test also.

It is using so called agents within the application to test
for vulnerabilities dynamically in as it runs. These agents are
connected to the application directly and are analyzing while it
is manually or automatically tested, identifying vulnerabilities
in real time. They are using runtime security instrumentation
to analyze applications (e.g. source code, HTTP traffic,
backend connections) thus providing a comprehensive
view of vulnerabilities. This technology allows for easier
testing automation than the other application security testing
(AST) methods presented above because for example SAST
tools may take very long and DAST tools are often inaccurate.

1) Contrast Asses [23]: Contrast Security argues to be the
leader in this area of security testing. It claims to revolutionize
continuous vulnerability detection without false positives, to be
easy to install, simple to use and highly scalable. It provides
complete coverage of the OWASP Top 10 and beyond and is
of course easily automatable into existing CI tools. As is runs
from within the running application, it can also generate sim-
ple diagrams that illustrate the application’s major architectural
components (i.e. used frameworks or running components like
a database), thus providing simple architectural overviews in
order to identify flaws in the design of a software product.

Delivery model: Cloud
Pricing: Not publicly available

2) Seeker [24]: Seeker is an IAST tool claiming to focus
on real vulnerabilities. They have a patented verification
technology which validates found flaws in order to report if
they are real vulnerabilities or not, thus almost eliminating
false positives. It claims to be easy to install and integrate

into existing CI tools, it provides detailed documentation of
found vulnerabilities including sample code to fix the issues

Delivery model: Cloud or on premise
Pricing: Not publicly available

3) NetSparker/Invicti [15]: Netsparker, which was
presented above in the section of DAST tools, also provides
IAST functionality claiming to find more real vulnerabilities
using their unique dynamic + interactive scanning approach.

4) Acunetix [16]: Also Acunetix, which was already
presented, provides an additional tool (called AcuSensor)
to combine with their DAST tool in order to provide more
accurate detection results and better overall test coverage.

5) Veracode [21]: Finally also VeraCode provides IAST
functionality making it a complete solution to cover all three
AST methods using one platform.

V. DISCUSSION

Three common application security testing methods are
presented in this paper: static, dynamic and interactive or
runtime application security testing. A comparison of both
SAST and DAST tools is given and also the new and pretty
promising method of interactive runtime security testing is
presented together with some current tools providing this
functionality. This chapter will discuss diversities of the tools
and tries to give recommendations for teams which want to
integrate these tools in order to benefit from the promising
field of continuous security testing.

A. SAST

Related the comparison of SAST tools all the presented
tools have very good CI integration. The winner related speed
is clearly WhiteSource, whereas VeraCode has the lowest false
positive rate. All tools seem to be developer friendly. As a
suggestion it would make sense to go deeper into WhiteSource
and VeraCode if a team wants to integrate SAST into their
existing CI and DevOps workflow.

B. DAST

Related the comparison of DAST tools all the presented
tools support CI integration, while especially Netsparker and
Acunetix make it more simple and easy. Also, Netsparker
has a very high vulnerability detection rate and together
with AstraPentest a false positive rate of zero which makes
these two tools very promising. Information related developer
productivity was not always available but customization seems
to be possible with most of the presented tools.

C. IAST

Research of IAST tools found two tools definitely worth
looking into more deeply: Contrast Asses and Seeker. Both
tools seem to offer a really comprehensive set of advantages
related continuous security testing, especially because they

Table II
COMPARISON OF DAST TOOLS

NetSparker/Invicti Acunetix AstraPentest PortSwigger BurpSuite Detectify OWASP ZAP VeraCode
CI integration very good very good good good good ok good
Vulnerability detection rate very high high high high n/a n/a n/a
False positive rate zero low zero low low middle low
Developer productivity very good good good n/a n/a ok very good
Customization support possible n/a possible/manually possible possible possible n/a

are embracing the interactive real time approach called IAST.
Not only they combine the advantages of SAST and DAST
tools while removing their disadvantages, they also integrate
well with the DevOps method and additionally bring other
benefits like architectural overview or conversion of already
written test cases to security test cases.

Software Composition Analysis (SCA)
Open source security and so called supply chain attacks

are a big deal in the world of secure coding. Software
composition analysis is also an important method for
application security testing: it scans external libraries for
security issues. For example, Kiuwan and Contrast Assess
provide the functionality to automatically analyze external
third party libraries in order to find issues in these used
dependencies. This security feature was also declared a low
hanging fruit in some of the related papers where also tools
are presented for this purpose.

Runtime application self-protection (RASP)
Another method not mentioned, as not related to integration

into CI pipelines, is runtime application self-protection. This
method enables inspecting application behavior while the
application is running, usually in production. Using this
approach is similar to IAST, with the difference that RASP
can detect and block attacks in realtime while they occur. As
an example, Contrast protect has a great demonstration video
on detecting and blocking attacks on the log4j vulnerability
without patching the vulnerable library [25].

Most of the tools presented in this paper focus on the field
of web application development. For the area of industrial
software components and embedded devices, more research
could be conducted.

VI. CONCLUSION

The goal of this paper was to research current tools for secu-
rity testing in continuous integration environments in order to
automate security testing inside the software development life
cycle. Therefore, a recherche of related work was conducted
to first get an overview of work already done in this area.
Although the related work is presenting a good amount of
available tools, research has shown that the market has to
offer more. Also, all of the reviewed papers talk about the
missing security knowledge developers have in general and
it was found that the reviewed tools of this paper tackle this
issue with good documentation and even tips for fixing found

issues like source code hints. Besides that, most of the tools
presented here offer very good integration into the DevSecOps
process making it easy to integrate into existing CI tools. It
can be concluded that lots of tools and professional products
exist in the market today and can be used quite easily, be it
open source or paid services.

This work only provides a theoretical review and compari-
son, no practical case studies were conducted. Because of that,
in order for teams to decide on which tools to integrate, more
practical reviews should be done and are highly recommended.
Each team is different and has unique requirements. All of the
presented tools provide demos and very good documentation.

Related the three categories of application security testing,
especially the interactive real time approach (IAST) seems
to be extremely effective and accurate. Because of its real
time analyzation of running applications it provides a more
sophisticated approach compared to the other two methods.
Being able to scan each line of code from inside and therefore
having knowledge about the control flow and context of
an application, much better results can be presented. This
knowledge is pretty helpful. For example, using IAST it is
possible to identify credit card numbers extracted from a
database and alert when these credit card numbers end up
exposed in a log file. Also the possibility of performing an
architectural analysis and therefore finding flaws in the design
of already written software seems to be a very large advantage
and could also be helpful when conducting threat modeling
of legacy applications. It can be concluded that, also related
to time and budget, it is definitely worth looking into the
approach of IAST first.

Although automated tools surely do not take away the need
for manual security testing like threat modeling, code reviews
or manual penetration testing, they can still support teams on
their way to create more secure software in a great way.

REFERENCES

[1] M. Howard and S. Lipner, “The security development lifecycle,” 2006.
[2] J. Kuusela, “Security testing in continuous integration processes,” 2017,

https://aaltodoc.aalto.fi/bitstream/handle/123456789/27065/master
Kuusela Juha 2017.pdf.

[3] P. Thulin, “Evaluation of the applicability of security testing techniques
in continuous integration environments,” 2015, https://www.diva-portal.
org/smash/get/diva2:784545/FULLTEXT01.pdf.

[4] P. Koskela, “Automated security testing utilizing continuous integration
and continuous delivery technologies,” 2021, https://www.theseus.fi/
bitstream/handle/10024/502952/Opinnaytetyto Koskela Pyry.pdf.

[5] J. Immonen, “Web application security testing as part of continuous in-
tegration in .net projects,” 2015, https://www.theseus.fi/bitstream/handle/
10024/103333/Immonen Joona.pdf.

https://aaltodoc.aalto.fi/bitstream/handle/123456789/27065/master_Kuusela_Juha_2017.pdf
https://aaltodoc.aalto.fi/bitstream/handle/123456789/27065/master_Kuusela_Juha_2017.pdf
https://www.diva-portal.org/smash/get/diva2:784545/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:784545/FULLTEXT01.pdf
https://www.theseus.fi/bitstream/handle/10024/502952/Opinnaytetyto_Koskela_Pyry.pdf
https://www.theseus.fi/bitstream/handle/10024/502952/Opinnaytetyto_Koskela_Pyry.pdf
https://www.theseus.fi/bitstream/handle/10024/103333/Immonen_Joona.pdf
https://www.theseus.fi/bitstream/handle/10024/103333/Immonen_Joona.pdf

[6] E. Viitasuo, “Adding security testing in devops software de-
velopment with continuous integration and continuous delivery
practices,” 2020, https://www.theseus.fi/bitstream/handle/10024/342349/
Opinnaytetyo Ella Viitasuo pdfa.pdf.

[7] R. N. Rajapakse, M. Zahedi, M. A. Babar, and H. Shen, “Challenges
and solutions when adopting devsecops: A systematic review,” 2022,
https://www.sciencedirect.com/science/article/pii/S0950584921001543.

[8] K. Beck, “Extreme programming explained: Embrace change,” 1999.
[9] “Sonarcube,” https://www.sonarqube.org/features/security/sast/.

[10] “Whitesource,” https://www.whitesourcesoftware.com/sast/.
[11] “Veracode,” https://www.veracode.com/products/

binary-static-analysis-sast.
[12] “Codacity,” https://codacy.com/product.
[13] “Appscan,” https://www.hcltechsw.com/appscan/offerings/source.

[14] “Kiuwan,” https://www.kiuwan.com/code-security-sast/.
[15] “Netsparker/invicti,” https://www.invicti.com/plp/dast/.
[16] “Acunetix,” https://www.acunetix.com/plp/dast/.
[17] “Astrapentest,” https://www.getastra.com/pentesting/web-app.
[18] “Portswigger burpsuite,” https://portswigger.net/burp/.
[19] “Detectify,” https://detectify.com/.
[20] “Owasp zap,” https://www.zaproxy.org/.
[21] “Veracode,” https://www.veracode.com/products/dynamic-analysis-dast.
[22] T. Janca, “Alice and bob learn application security,” 2020.
[23] “Contrast asses,” https://www.contrastsecurity.com/contrast-assess.
[24] “Seeker,” https://www.synopsys.com/software-integrity/security-testing/

interactive-application-security-testing.html.
[25] “Contrast protect demo,” https://contrastsecurity.wistia.com/medias/

80y2qkb6aq.

https://www.theseus.fi/bitstream/handle/10024/342349/Opinnaytetyo_Ella_Viitasuo_pdfa.pdf
https://www.theseus.fi/bitstream/handle/10024/342349/Opinnaytetyo_Ella_Viitasuo_pdfa.pdf
https://www.sciencedirect.com/science/article/pii/S0950584921001543
https://www.sonarqube.org/features/security/sast/
https://www.whitesourcesoftware.com/sast/
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast
https://codacy.com/product
https://www.hcltechsw.com/appscan/offerings/source
https://www.kiuwan.com/code-security-sast/
https://www.invicti.com/plp/dast/
https://www.acunetix.com/plp/dast/
https://www.getastra.com/pentesting/web-app
https://portswigger.net/burp/
https://detectify.com/
https://www.zaproxy.org/
https://www.veracode.com/products/dynamic-analysis-dast
https://www.contrastsecurity.com/contrast-assess
https://www.synopsys.com/software-integrity/security-testing/interactive-application-security-testing.html
https://www.synopsys.com/software-integrity/security-testing/interactive-application-security-testing.html
https://contrastsecurity.wistia.com/medias/80y2qkb6aq
https://contrastsecurity.wistia.com/medias/80y2qkb6aq

	Introduction
	Related work
	Background
	DevOps & Continuous Integration
	DevSecOps

	Tools
	Static application security testing (SAST)
	SonarQube sast1
	WhiteSource sast2
	Veracode sast3
	Codacy sast4
	AppScan sast5
	Kiuwan Code Security sast0

	Dynamic application security testing (DAST)
	NetSparker/Invicti dast1
	Acunetix dast2
	AstraPentest dast3
	PortSwigger BurpSuite dast4
	Detectify dast5
	OWASP ZAP dast6
	Veracode dast7

	Interactive application security testing (IAST)
	Contrast Asses iast1
	Seeker iast2
	NetSparker/Invicti dast1
	Acunetix dast2
	Veracode dast7

	Discussion
	SAST
	DAST
	IAST

	Conclusion
	References

